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The perturbed three-dimensional oscillator 
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Abstract. A renormalired version of inner product and hypervirial theories is used to 
calculate the energy eigenvalues for four states afa  perturbed three-dimensional oscillator 
and to obtain the Rayleigh-SchrBdinger energy perturbation series. 

1. Introduction 

The inner product method has been used by Killingbeck (1986) and Witwit (1991) 

method can be modified and extended quite easily to apply to problems in three 
dimensions. This paper is intended to point out the flexibility of the inner product 
perturbation theory, which gives it an advantage over the hypervirial method. 

The particular example we consider is that of the Schrodinger equation with a 
Hamiltonian of the perturbed oscillator form 

( 1 )  

an; app;ies io i-Wo-dimensiona; osci;;ator, .ge have since Csia;;ished ihai 

H = -vi+ x2 + y2 + 22 + V,(x, y ,  2) J = l , 2  

where 

V,=,(x,  y ,  z )  = A[a, ,x4+ a22y4+ a,,z4+ 2a,,xZy2 + 2a,,x'z2+ 2a,,y2z2] ( 2 )  

and 

V,=,(x, y,  z )  = A[a, ,x6+ a2,y6+ a, ,z'+6a,2,xiy2zi+3a,,x'z2+3a,,x'~yi 

+ 3az3y4z2 +3a,,y4x2+3a,,z4x2 + 3a,,z4y2]. ( 3 )  

The potentials ( 2 )  and ( 3 )  are non-separable but show a high symmetry; this cuts down 
the amount of computation required. The energy perturbation series is expected to be 
divergent, so we start by introducing a renormalization parameter (p ) ,  and write the 
potentiai in (1) in renormaiizea iorm 

V'(x, y,  Z )  = p 2 [ x 2 + y 2 +  z2 ]  +[ V,(x, y ,  Z) - A p ( x Z + y 2 +  z 2 ) ]  (4) 

p2 = 1 + A &  ( 5 )  
jetting p = o  in the pe~ur~Daiion caicuia~~ori  gives the ira&ionai Rayieigh- 

where 

Schrodinger series for the problem and ensures that the form of the potential in (4) 
reduces to the original one in ( 1 ) .  The use of the renormalization parameter p is helpful 
in improving convergence in this technique as well as in the hypervirial approach. It 
is important to point out that the effect of varying the parameter p is to allow us to 
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obtain results of high accuracy as we will see later. Many techniques have been used 
to obtain the energy eigenvalues for the two-dimensional potential V ( x ,  y). The work 
of Hioe et al (1978) involved matrix diagonalization. They were able to calculate 
energy eigenvalues for different values of A and for various quantum numbers. Blanken- 
becler el  al (1980) used the inner product method to calculate the energy eigenvalues 
for the two-dimensional oscillator. Ari and Demiralp (1985) computed the eigenvalues 
of a two-dimensional oscillator by using perturbation theory and Pad6 approximants. 
Witwit (1990) used the inner product method and renormalized series method to 
calculate accurate energies for six states, E,,o, E,,, , Eo,2, E,,,, E,,, and E,,I for different 
values of ( a , , ,  aZ2,  a,2)  and perturbation parameter A. 

But the abundance of studies of the two-dimensional oscillator is not matched in 
the case of three-dimensional problems, for which there are few reported results in 
the literature. The work of Witwit (1991) has used the renormalized series method and 
power series method to calculate the energy eigenvalues for a three-dimensional 
oscillator for perturbation (Ar4, Ar6,  Ar8) and also investigated all spherically symmetric 
states in any dimension (N = 1,2,3, .  . . ,1000). We also computed the energy eigen- 
values for potentials N r 4  and N-'r4 and obtained results of high accuracy. 

In the present work we present some extended numerical calculations using the 
inner product technique for three dimensions. We computed the eigenvalues for 
different values of the potential parameters ( a , , ,  aZ2, a,,, a I 2 ,  az,, a,,, a,*,) and for 
four eigenstates (En,,n2,n,, n,, n,, n,=O, 1, 2, 3), over a wide range of perturbation 
parameter values, 0.01 5 A s lo6. 

The renormalized series method in the present work is used for the special case 
a,, = a2> = a,3 = a,> = al ,  = a2, = 1, to calculate the energy eigenvalues for the perturbed 
oscillator potential in three dimensions. In rectangular coordinates the Schrodinger 
equation for the renormalized potential V:(x ,  y, z) can be written 

The energy eigenvalues of the unperturbed oscillator is given by 

= Pn, + 2n2+2n,+31 n , ,  n2 ,  n,=O, 1,2,. . . . (7) 

In each state the energy ieveis depend on the tripiet quantum numbers i n , ,  n2, n,). 
The energy levels are degenerate, because of the sum 

n,+n ,+  n3= n. (8) 

2. The recurrence relation for the inner product and its use 

To find the recurrence relations which allow us to calculate the eigenvalues for the 
Schrodinger equation (6) we use the reference function: 

(9) 3 @ ( x , y , z ) = ( x p ~ y p ~ y p ~ )  exp - - ( x z + y z + z 2 )  [ :  
where p , ,  p 2  and p ,  are parity indices, with values 0 for even parity and 1 for odd 
parity. The methods of calculation used by the authors cited above Blankenbecler et 
al (1980, Killingbeck (1986), Witwit (1991) start from the equation 

EA(M, hJ, L ) = ( W \ I ~ X ~ ~ ~ ~ ~ Z ~ ~ \ @ )  (10) 



The perturbed three-dimensional oscillator 3055 

obtained by taking the inner product of the Schrodinger equation (6) with the reference 
function (9), where the A(M, N, L) ,  sometimes called moments, are defined by 

A(M, N, L) (11) 

Then, substituting the perturbation expansions 

A(M, N, L ) = C  A(M, N, L, K ) A K  
K 

E =E E(I)A'  (13) 

into the A(M, N, L )  recurrence relation given by equation (IO) leads to a recurrence 
relations for the coefficients; for the renormalized potential V:='(x ,  y ,  z )  given by (4) 
the relation can be written as 

I 

k 

E(I)A(M, N, L, K - 1) 

=a,,A(M+2, N, L, K-l)fa,,A(M, N + 2 ,  L, K - 1 )  

+a,,A(M, N, Lf2,  K - l)+2a,,A(Mf 1, N +  1, L, K - 1) 

+2a,,A(M+ 1, N, L f l ,  K - 1)+2a2,A(M, N +  1, L + l ,  K -1) 

-PA(M+ 1, N, L, K - I)-PA(M, N +  1, L, K -1) 

-PA(M, N, L+1, K -1)  

+4p[M + N + L - SI -SI - S3]A(M, N, L, K )  

-2M[2M+2P1 -l]A(M- 1, N, L, K )  

- 2N[ 2N + 2P2 - 11 A( M, N - 1, L, K ) 

-2L[ZL+ZP3-1]A(M, N,L-1, K )  

and for the renormalized potential V:=,(x, y ,  z ) ,  the relation can be written as 

Z E(I)A(M, N, L, K - 1) 
k 

I 

= a , , A ( M + 3 , N , L , K - l ) + a 2 , A ( M , N + 3 , L , K - l )  

+a,,A(M, N, L f 2 ,  K - 1)+6aI2,A(M+ 1, N +  1, L +  1, K - 1) 

+3a,*A(M+2, N f l ,  L, K-1)+3at3A(M+2, N, L f l ,  K-1) 

+3aI2A(M+1, N+2,  L, K -l)+3a2,A(M, N+2,  L+1,  K - 1 )  

+3o,,A(M+l, N, L+2,  K -1)+3%A(M, N+1, L f 2 ,  K-1)  

-PA(M + 1, N, L, K - 1) -PA(M, N +  1, L, K - 1) 

-PA(M, N, Lf  1, K - 1) f 4 b [  M + N + L - S ,  - S, - &]A( M, N, L, K )  

-2M[2M+2P1 -I]A(M - 1, N, L, K )  

- 2 N[2 N + 2P2 - 1 ]A( M, N - 1, L, K ) 

-2L[2L+2P3-1]A(M, N,L-1, K ) .  
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In writing the relations (14) and (15) we have moved one term E(O)A(M, N, L, K )  
from the sum over I to the right of the equation, and have expressed the unperturbed 
energy in the form 

(16) 
The unperturbed energy, given by (16), must have the same value of (7). The parity 
indices for x, y and z are P I ,  P2 and P, (0 or 1). The x, y and z state numbers S, , S2 
and S, (0, 1,2), specify which particular state is being treated. When PI = P2 = P,, we 
can further specify an x-y-z  interchange symmetry index P4 (0 or 1) such that 

E ( 0 )  = p[3 + 2P, + 2P2+2P,  + 4s,  +4S2+4S,]. 

A(M, N,L,K)=(-1)'4A(N, M, L,K)=(-l)'aA(N, L , M , K ) =  _ . . .  
(17) 

The initial condition imposed on the A( M, N, L, K )  if P, = P2= P, is 

A(&, S2, S,O)=(-I)'"A(S,, SI,  S , O )  

= (- 1)'4A( S, , S2, SI, 0) = 1. (18) 
In the present work we wish to point out that, although the results displayed are 

restricted to even-parity states (P4 = 0), the method can be used for odd-parity states 
( P 4 =  1). The recurrence relations (14) and (15) are then used as follows: if the energy 
sum up  to E ( Q ) A Q  is required, then the indices have the ranges set out below if 
P, = P2 = P, ,  with the convention S, s S, c S, on the state labels: 

K = O , 1 , 2  ,..., Q 

N = 0,1, . . . , L - P, 

(fixed K )  L=0,1 ,2 , .  . . ,S2+2Q-2K 

(fixed K ,  L )  

(fixed K, L, N )  M=O,l, . . . ,  N-P,. 

The indices are scanned in the order given above and the relations (14) and (15) 
are used to work out A(M,  N, L, K )  in terms of lower order elements which are already 
known. Then we can get A(N, M, L, K ) ,  A(L, N, M ,  K), A ( N ,  L, M, K ) ,  . . . , from the 
symmetry relation (17). E ( K )  is found from the equation for the special case M = S,,  
N = S , ,  t=S,, and the sum on  the left-hand side becomes E ( K ) ,  because of the 
intermediate normalization convention A(&, S,, S,, 0)= 1 which we impose on the 
algorithm. 

3. The recurrence relation for the renormalized series approach 

The renormalized series method has been found to work very well in previous work 
and produced highly accurate results for the problems investigated by Witwit (1989). 
As indicated previously the renormalized series can be used to compute the energy 
eigenvalues for the Schrodinger equation (6) in some cases. When the relationship 
a , ,  = aZ2 = a,, = aI2 = a,, = a,, = 1 holds, the equation (6) has a spherical symmetry. 
The energy levels are then most appropriately characterized by the quantum numbers 
(n,, I )  rather than (n,, n,, n,). Letting x = r cos 0 sin +, y = r sin B sin + and z = r cos 0, 
such that r 2 =  x 2 + y 2 + z 2 ,  the radial part of the eigenvalue equation (6) is 
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where 

u ( r )  = I ( / +  l ) r - 2 +  r2+  Ar2' 2 1 = 4 , 6 .  (20)  

V ( r )  =pr2+1(1+1)rF2+A[r2' -pr'] p = l + h p  (21)  

We can write u ( r )  in other form by using the renormalization parameter p 

where I is the angular momentum: on the other hand, in spherical polar coordinates; 
the energies of the unperturbed levels are 

E ( O ) = [ 2 n + 3 1 f i .  (22)  

As in (7) we find again the degeneracy of the same multiplicities, where n is the 
principal quantum number, which can be expressed as 

n = 2 n , + l =  n,+n2+  n 3 .  (23) 

Here n, is called the radial quantum number; n is seen to be even or odd according 
to whether 1 is even or odd. 

If we use the perturbation expansions 

E =c E(I )A'  (24) 

( x N ? = X A ( N ,  M ) A M  (25) 

in the hypervirial relation given by Killingbeck (1985) in the form 

N 
2 'A. 

2 E ( N +  !)(.x") = E  V,(,.V+2+ I!!,yNf')-- ( w * -  ! ) @ N - 2 )  (25) 

and apply the Hellmann-Feynman theorem in the form 

E= ($) 
a A  

to the potential given by (21 ) ,  we get the following recurrence relation after some algebra 

( 2 N + 2 ) 1  E ( l ) A ( N , M - I )  
M 

0 

= 2 N [ ( l ( l +  1))-a(N2- I ) ] A ( N  - 2 ,  M )  

+ ( 2 N + 4 ) [ p A ( N + 2 ,  M )  -PA( N + 2 ,  M - l ) ]  

+ ( 2 N + 2 + 2 1 ) A (  N + U ,  M - 1 )  

( M +  l ) E ( M + l )  = A(21, M ) - P A ( Z ,  M ) .  

(28) 

(29) 

Fioiii the ieiiiiiefiie i ek i tk i i~  (28) iiiid (291, wz iaii Biid the eiieigy ioeili'riieiiis with 
the help of the E ( 0 )  value and the condition B(O,O= 1. The expression ( 2 n , + l + l )  
show that a degeneracy exists between energy levels to the degree that all altowable 
combinations of n, and 1 consistent with the same values of the I and n, yield the same 
energy levels. 
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4. Results and discussion 

In this section we investigate and discuss the results of the numerical calculations for 
three-dimensional systems. We used two methods to produce our results for this 
problem: the renormalized series method and the inner product method; also we 
checked some of our results by using a power series method which has been used 
widely by Witwit (1989). We extended our numerical calculations for higher values of 
perturbation parameter A in order to get a clear picture about the applicability of our 
methods to investigate this type of perturbation. It is important to point out that it  is 
well known in perturbation theory that the accuracy of the energy eigenvalues decreases 
as A increases. This situation occurs in all problems involving eigenvalues in perturha- 
tion theory. But in this case it is apparent from our listed results in tables 1-5t that 
the accuracy is in general insensitive to the values of the perturbation parameter A ;  
for instance in table 2, the accuracy of energy eigenvalue for E,,o.o at A = 5 is four 
digits but at A = 5000 it is three digits. We have not observed any fundamental difference 
in behaviour between the accuracy of the other eigenvalues such as E,, , , , ,  E,,,,,2 and 

It is important to point out that the renormalization parameter ( p )  has played the 
important role of enabling convergence of our calculations. We can see from the results 
that the accuracy depends on the value of the renormalized parameter ( p ) .  The best 
p values in this calculation have been obtained by numerical search, so our calculation 
reveals the importance of finding the best values of the renormalization parameter. 
Table 6 shows some specimen results for two eigenstates E,,o,o and E, , , , ,  at A =0.1 for 
different values of the renormalization parameter; it is clear how the accuracy vanes 
with the values of p ;  for example, the accuracy is very poor at p = 0 but the accuracy 
changes with various p values. The first difficulty we face is to guess the best values 
of p. We continue to change the renormalized parameter until energy eigenvalues of 
the best required accuracy are obtained. The values of energy in tables 1-4 are for the 
case a , ,  = a2> = a3, = q2 = = a,3  = 1; we show some energies for states (n,, n,, n2 = 0, 
1, 2, 3) and for O.l<A<1O6. The two approaches work very well for the three- 
dimensional oscillator, and the results obtained by these methods are in good agreement 
with each other. We observe that the two approaches yield a good number of accurate 
digits for the eigenvaiues at iow vaiues oi  A. For higher vaiues of the perturbation 
parameter A the renormalized series method gives more digits than the inner product 
method. In the absence of other reported results (to the best of our knowledge), we 
have used the non-perturbative method (power series) to check some of our results 
for higher values of the perturbation parameter A for the case of a spherical symmetric 
potential (anm = 1, n, m = 1,2,3) in which the potential reduces to a one-dimensional 
potentiai. 

One main difference between the two perturbative techniques is that the hypervirial 
method can only work for the case of a symmetric potential a , ,  = ag2 = = a J 2  = aZ3 = 
a,3 = 1 in which the potential reduces to a one-dimensional potential. The inner product 
method deals with more general parameter values but still requires a , ,  = a Z 2 =  a33,  
since the equations used exploit this symmetry to reduce computation. Also we face 

B ( N ,  M, L, K )  require high memory and thus we only managed to obtain energies 

t Tables 1-6 have been deposited in the British Library Supplementary Publication scheme, document no. 
SUP70043. 

E0,2 ,3 ,  

pr0biem in deaiing the inner p r ~ ~ u c ~  mei'io; because the e;eiiieiiis uf 
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series up to 18 terms; we reduce the effect of this restriction by choosing the best values 
of the renormalization parameter p in order to obtain the best convergence results 
with this limited range of terms, and this took a long time to do our calculations. In 
tabIes 2 and 5 we obtained energy values for the case ann = O  and a,, = 1 ( n ,  m = 1,2,3), 
with in the wide range 0.01 S A S  5000; the inner product method gave good and 
accurate results even for the higher values of A and we worked hard to obtain these 
results with good accuracy. Sometimes we ran our program many times, with different 

a.. = 1, a,, = -1, for 0.01 S A S  0.5, converged very well for small values of A but the 
convergence deteriorated for A > 0.5 and high state number. 

va!fies of ,R, !e gc! the best aGGfirary. !fi ?&!e 3 the resu!ts we prese:<ed_ f ~ r  the case 

Summarizing our results we can say the following. 
We succeeded in finding the energy eigenvalues for states E,,,,,, E ,,,,, , 

with good accuracy even for high values of A (0.1 C A S  lo6), and for different values 
of the potential parameters (a;,,: = 1; - l i  0);  (a,,, = 1; 0). The set of tables 1-5 cover 
a wide range of values of (A) .  It is clear from our calculations that the accuracy of 
potential 2, in general, is better than the accuracy of potential 3, and we also faced 
the same situation in the one- and three-dimensional cases for perturbation Ax4, Ax6, 
Ax', Ar', Ar6, Ar'. It is important to point out, as the power index of the perturbation 
increases the convergence of the perturbation series begin to decrease even with small 
values of A (see tables 2.3 and 3.7 of Witwit 1989). 

We avoided the phenomenon of bogus convergence by computing the energy 
eigenvalues for different values of the renormalization parameter p, and we also used 
another technique, the power series method. We believe that some of the accuracy of 
our results may be improved with a better choice of p, and in this respect we did our 
best to achieve this choice. 

We wish to note that the results yielded by the inner product were improved by 
using the Aitken extrapolation; it seems that this extrapolation improves the conver- 
gence of the perturbation series and gives accuracy to extra digits. We also wish to 
draw attention to our calculations in three dimensions which may be regarded as a 
guide to future numerical calculations. As far as we know, we are the first to investigate 
numerically the energy eigenvalues for a wide range of potential parameters in three 
dimensions. 
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